Abstract

Inspired from the highly bioadhesive performance of polydopamine (pDA)-based layers, a facile method was developed to modify GO nanosheets with pDA (pDA@GO). The key design of the molecularly imprinted nanocomposite membranes (MINMs) was integrated pDA@GO nanosheets into the porous PVDF membranes as the highly adjustable active domains. Dendrites-like 3D Ag microspheres were obtained on the surface of nanosheets-infiltrated nanocomposite membranes (NS-NMs) to obtain high performance membranes. The as-prepared pDA coating layers not only modified GO nanosheets, but also could be used as a versatile platform for the further immobilizing dendrites-like 3D Ag microspheres on the surface of NS-NMs to improve anti-fouling property. Attribute to the highly adjustable active domains and dendrites-like 3D Ag microspheres, the as-prepared MINMs revealed an outstanding adsorption amount (61.55 mg g−1), a better hydrophilicity and regenerability. Most importantly, excellent perm-selectivity performance (βketoprofen/ibuprofen and βnaproxen sodium/ibuprofen were 6.55 and 6.63, respectively) could be also achieved, which is beneficial to adsorb and separate of ibuprofen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call