Abstract

In the developing nanotechnology world, numerous attempts have been made to prepare the nobel metallic nanoparticles (NPs), which can improve their applicability in diverse fields. In the present work, the biosynthesis of silver (Ag) NPs has been successfully achieved through the medicinal plant extract (PE) of G. resinifera and effectively used for the catalytic and antibacterial applications. The size dependant tuneable surface plasmon resonance (SPR) properties attained through altering precursor concentrations. The X-ray and selected area diffraction pattern for Ag NPs revealed the high crystalline nature of pure Ag NPs with dominant (111) phase. The high-resolution TEM images show the non-spherical shape of NPs shifting from spherical, hexagonal to triangular, with wide particle size distribution ranging from 13 to 44 nm. Accordingly, the dual-band SPR spectrum is situated in the UV–Vis spectra validating the non-spherical shape of Ag NPs. The functional group present on the Ag NPs surface was analysed by FT-IR confirms the capping and reducing ability of methanolic PE G. resinifera. Further, the mechanism of antimicrobial activity studied using electron microscope showed the morphological changes with destructed cell walls of E. coli NCIM 2931 and S. aureus NCIM 5021 cells, when they treated with Ag NPs. The Ag NPs were more effective against S. aureus and E. coli with MIC 128 μg/ml as compared to P. aeruginosa NCIM 5029 with MIC 256 μg/ml. Apart from this, the reduction of toxic organic pollutant 4-NP to 4-AP within 20 min reveals the excellent catalytic activity of Ag NPs with rate constant k = 15.69 s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.