Abstract

Microbial synthesis offers a sustainable and eco-friendly approach for nanoparticle production. This study explores the biogenic synthesis of zinc oxide nanoparticles (ZnO-NPs) utilizing the actinomycete Saccharopolyspora hirsuta (Ess_amA6) isolated from Tapinoma simrothi. The biosynthesized ZnO-NPs were characterized using various techniques to confirm their formation and properties. UV-visible spectroscopy revealed a characteristic peak at 372 nm, indicative of ZnO-NPs. X-ray diffraction (XRD) analysis confirmed the crystalline structure of the ZnO-NPs as hexagonal wurtzite with a crystallite size of approximately 37.5 ± 13.60 nm. Transmission electron microscopy (TEM) analysis showed the presence of both spherical and roughly hexagonal ZnO nanoparticles in an agglomerated state with a diameter of approximately 44 nm. The biogenic ZnO-NPs exhibited promising biomedical potential. They demonstrated selective cytotoxic activity against human cancer cell lines, demonstrating higher efficacy against Hep-2 cells (IC50 = 73.01 µg/mL) compared to MCF-7 cells (IC50 = 112.74 µg/mL). Furthermore, the biosynthesized ZnO-NPs displayed broad-spectrum antimicrobial activity against both Pseudomonas aeruginosa and Staphylococcus aureus with clear zones of inhibition of 12.67 mm and 14.33 mm, respectively. The MIC and MBC values against P. aeruginosa and S. aureus ranged between 12.5 and 50 µg/mL. These findings suggest the potential of S. hirsuta-mediated ZnO-NPs as promising biocompatible nanomaterials with dual applications as antimicrobial and anticancer agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.