Abstract

Nanozymes offer many advantages such as good stability and high catalytic activity, but their selectivity is lower than that of enzymes. This is because most of enzymes have a protein component (apoenzyme) for substrate affinity to enhance selectivity and a non-protein element (coenzyme) for catalytic activity to improve sensitivity. The synergy between molecularly imprinted polymers (MIPs) and nanozymes can mimic natural enzymes, with MIP acting as the apoenzyme and nanozyme as the coenzyme. Despite researchers' attempts to associate MIPs with nanozymes, the full potential of this combination remains not well explored. This study addresses this gap by integrating Fe3O4-Lys-Cu nanozymes with peroxidase-like catalytic activities within appropriate MIPs for L-DOPA and dopamine. The catalytic performance of the nanozyme was improved by the presence of Cu in Fe3O4-Lys-Cu and further enhanced by MIP. Indeed, the exploration of the pre-concentration property of MIP has increased twenty-fold the catalytic activity of the nanozyme. Moreover, this synergistic combination facilitated the template removal process during MIP production by reducing the extraction time from several hours to just 1 min thanks to the addition of co-substrates which trigger the reaction with nanozyme and release the template. Overall, the synergistic combination of MIPs and nanozymes offers a promising avenue for the design of artificial enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.