Abstract

Surface-enhanced Raman spectroscopy (SERS) is an analytical method with high potential in the field of medicine. The design of SERS substrates, based on specific morphology and/or chemical modification, allow the recognition of the presence of specific analytes with precision close to a single-molecule detection limit. However, the SERS analysis of real samples is significantly complicated by the presence of a large number of “minor” molecules that can shield the signal from the target analyte and make it impossible to determine it in practice. In this work, an advanced SERS approach was used for the detection of cancer-related miRNA-21 in blood plasma, used as a molecular model background. The approach was based on the combination of the biomimetic plasmon-active SERS substrate, its tuned surface chemistry and advanced SERS data analysis, making use of artificial machine learning. In the first step, biomimetic SERS substrates were created using a butterfly wing as a starting template. The substrates were covered by thin Au layer and covalently grafted with hydrophobic chemical moieties to introduce superhydrophobic and water-adhesive properties. The self-concentration of the analyte on the substrates was achieved by minimizing the contact area between the analyte drop and the substrate, which is facilitated by surface superhydrophobicity and additionally enhanced by drop evaporation on the flipped over substrate. Due to the presence of cancer miRNA and blood plasma background, the measured SERS spectra represent a complex of interfering peaks. Thus, their interpretation was carried out using a specially trained machine learning model. As a result, reliable and repeatable quantitative detection of miRNAs below the femtomolar level (up to 10−16 M) on the background of human blood plasma becomes possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.