Abstract

AbstractBionic condensate microdrop self‐propelling (CMDSP) surfaces are attracting intensive interest due to their academic and commercial values. Up to now, it is still a great challenge to design and fabricate CMDSP nanostructures with superior condensation heat transfer (CHT) efficiency. Here, it is reported that the CHT coefficient of copper surfaces can be enhanced maximally ≈320% via in situ growth and geometric regulation of closely packed aligned nanoneedles with CMDSP function. These experiments and theoretical analyses indicate that reducing the interspaces of nanoneedles can help reduce the departure diameters of condensate microdrops and increase their nucleation density, both of which are beneficial to enhance CHT. In contrast, increasing the tip size and height of nanoneedles can increase drop departure diameters and film‐layer thermal resistance, respectively, either of which is disadvantageous to enhance CHT. Clearly, only considering superhydrophobic effect is insufficient and both choosing ideal nanoarchitectures and optimizing their geometric parameters are very crucial to realize high‐efficiency CHT, which optimization can be achieved via simply controlling growth time of nanostructures. These findings offer new insights into the design and development of first‐rank CHT interface nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.