Abstract
In hybrid perovskite solar cells (PSCs), the reaction of hydrogens (H) located in the amino group of the organic A-site cations with their neighboring halides plays a central role in degradation. Inspired by the retarded biological activities of cells in heavy water, we replaced the light H atom with its abundant, twice-as-heavy, nonradioactive isotope, deuterium (D) to hamper the motion of H. This D substitution retarded the formation kinetics of the detrimental H halides in Pb-based PSCs, as well as the H bond-mediated oxidation of Sn2+ in Sn-Pb-based narrow-bandgap PSCs, evidenced by accelerated stability studies. A computational study indicated that the zero point energy of D-based formamidinium (FA) is lower than that of pristine FA. In addition, the smaller increase in entropy in D-based FA than in pristine FA accounts for the increased formation free energy of the Sn2+ vacancies, which leads to the retarded oxidation kinetics of Sn2+. In this study, we show that substituting active H with D in organic cations is an effective way to enhance the stability of PSCs without sacrificing photovoltaic (PV) performance. This approach is also adaptable to other stabilizing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.