Abstract

Flexible pressure sensors have garnered much attention recently owing to their prospective applications in fields such as structural health monitoring. Capacitive pressure sensors have been extensively researched due to their exceptional features, such as a simple structure, strong repeatability, minimal loss and temperature independence. Inspired by the skin epidermis, we report a high-sensitivity flexible capacitive pressure sensor with a broad detection range comprising a bioinspired spinosum dielectric layer. Using an abrasive paper template, the bioinspired spinosum was fabricated using carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. It was observed that nanocomposites comprising 1 wt% CNTs had excellent sensing properties. These capacitive pressure sensors allowed them to function at a wider pressure range (~500 kPa) while maintaining sensitivity (0.25 kPa−1) in the range of 0–50 kPa, a quick response time of approximately 20 ms and a high stability even after 10,000 loading–unloading cycles. Finally, a capacitive pressure sensor array was created to detect the deformation of tires, which provides a fresh approach to achieving intelligent tires.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call