Abstract

Bioinspired materials capable of driving liquid in a directional manner have wide potential applications in many chemical engineering processes, such as heat transfer, separation, microfluidics, and so on. Numerous natural materials and systems such as spider silk, cactus, shorebirds, desert beetles, butterfly wing, and Nepenthes alata have been serving as a rich source of inspirations in the area. During the last decades, great efforts have been devoted to design bioinspired smart materials for directional liquid transport. In this review, we begin by introducing several natural materials and systems with surface structural features contributing for their directional liquid transport property, followed by the basic concepts and theories about surface wettability, droplet motion, and driving forces with different structural features. Then, we summarize some typical applications of such bioinspired smart materials in industrial processes and chemical engineering, particularly in heat transfer, separation, ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.