Abstract

Developments in bioinspired superwetting materials have triggered technological revolutions in many disciplines. One representative area is liquid directional transport dominated by interface properties, which has experienced rapid progress recently. To improve the controllability, scientists try to use the external field, such as light, electricity, thermal, and so on, to assist or achieve controllable smart, responsive liquid directional transport. However, there are still some intractable problems and challenges behind prosperity. Here, we summarize the relevant basic theory of surface wettability and the processes of the development of bioinspired superwetting materials. We discuss the different essential mechanisms of liquid directional transport. Furthermore, smart external field-controlled fluid directional transport is the primary focus of this feature article. We briefly put forward our views on some outstanding problems, existing challenges, and trends in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.