Abstract
Congestion in a network is determined by the resource constraints and the number of deployed sensor nodes. Congestion can significantly degrade the quality of services (QoS) in wireless sensor networks (WSNs) regarding throughput and end-to-end delay. In this paper, a hybrid bio-inspired algorithm is proposed for congestion control in large-scale WSNs. First, a competitive Lotka-Volterra (C-LV) model to avoid congestion is employed, while fairness among sensor nodes is maintained. Second, particles swarm optimization (PSO) is employed to enhance C-LV by optimizing the parameter for minimizing end-to-end delay. PSO makes this scheme adaptive to change. Simulation results verify that the proposed scheme improves the QoS in WSNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.