Abstract

The improvement of hydrogen evolution reaction kinetics can be largely accelerated by introducing a well-designed hydrogen spillover pathway into the catalysts. However, the driving force and mechanism of hydrogen migration on the surface of catalysts are poorly understood and are rarely explored in depth. Here, inspired by the specific ferroelectric property of HfO2, Mn-O-Ca sites in Mn4CaO5, and Fe-Fe sites in hydrogenases, we constructed a bioinspired HfO2 coupled with Ir catalysts (Ir/HfO2@C) with an alkaline hydrogen reverse spillover effect from HfO2 to interface and acid hydrogen spillover effect from Ir to interface. Benefiting from the bidirectional hydrogen spillover pathways controlled by pH, Ir/HfO2@C displays a narrow overpotential difference between acidic and alkaline electrolytes. Remarkably, Ir/HfO2@C shows a remarkable mass current density and turnover frequency value, far exceeding the benchmark Ir/C by 20.6 times. More importantly, this Ir/HfO2@C achieves extraordinarily low overpotentials of 146 and 39 mV at 10 mV cm-2 in seawater and alkaline seawater, respectively. The anion-exchange membrane water electrolyzer equipped with Ir/HfO2@C as a cathode exhibits excellent and stable H2-evolution performance on 2.22 V at 1.0 A cm-2. We expect that the bioinspired strategy will provide a new concept for designing catalytic materials for efficient and pH-universal electrochemical hydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.