Abstract

Activity prediction is an essential task in practical human-centered robotics applications, such as security, assisted living, etc., which targets at inferring ongoing human activities based on incomplete observations. To address this challenging problem, we introduce a novel bio-inspired predictive orientation decomposition (BIPOD) approach to construct representations of people from 3D skeleton trajectories. Our approach is inspired by biological research in human anatomy. In order to capture spatio-temporal information of human motions, we spatially decompose 3D human skeleton trajectories and project them onto three anatomical planes (i.e., coronal, transverse and sagittal planes); then, we describe short-term time information of joint motions and encode high-order temporal dependencies. By estimating future skeleton trajectories that are not currently observed, we endow our BIPOD representation with the critical predictive capability. Empirical studies validate that our BIPOD approach obtains promising performance, in terms of accuracy and efficiency, using a physical TurtleBot2 robotic platform to recognize ongoing human activities. Experiments on benchmark datasets further demonstrate that our new BIPOD representation significantly outperforms previous approaches for real-time activity classification and prediction from 3D human skeleton trajectories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.