Abstract
Natural copper oxygenases provide fundamental principles for catalytic oxidation with kinetically inert molecular oxygen, but it remains a marked challenge to mimic both their structure and function in an entity. Inspired by the CuA enzymatic sites, herein we report two new photoactive binuclear copper-iodine- and bisbenzimidazole-comodified coordination polymers to reproduce the natural oxo-functionalization repertoire in a unique photocatalytic pathway. Under light irradiation, the Cu-halide coordination polymers effectively reduce NHP esters and complete oxygen reduction activation via photoinduced electron transfer for the aerobic oxidative coupling of hydroquinone with terminal alkynes, affording hydroxyl-functionalized ketones with high efficiency and selectivity. This supramolecular approach to developing bioinspired artificial oxygenases that merge transition metal- and photocatalysis supplies a new way to fabricate distinctive photocatalysts with desirable catalytic performances and controllable precise active sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.