Abstract

AbstractHuman red blood cells (hRBCs) possess a unique biconcave structure with a highly deformable cell membrane and condensed cytosol hemoglobin for oxygen delivery. Inspired by hRBCs, novel deformable core‐shell particles are developed as perfluorocarbon‐based oxygen carriers (OCs), called “cDFCs” (concave‐shaped deformable PFC‐based OCs), using the Shirasu porous glass (SPG) membrane emulsification technique. cDFCs have a perfluorooctyl bromide core of high oxygen solubility and poly(lactide‐co‐caprolactone) shell, which is thin and highly deformable. They have an optical equivalent diameter of 7.9 ± 2.5 µm and a unique concave shape. Owing to their low Young's modulus (93 kPa) and their diameter and shape, they successfully pass through a 4.5‐µm‐gap silicon microchannel as a blood capillary model. Enhanced oxygen supply to multiple layered cells is demonstrated under hypoxic conditions, indicating their efficiency as OCs. cDFCs are new potential OCs in tissue engineering and blood substitution in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.