Abstract

Bubble crystals in water are expected to achieve the broad and low-frequency acoustic band gaps that are crucial for acoustic blocking. However, preparing patterned bubble crystals in water remains a challenge because of the instability of bubbly liquids. Here, inspired by biological superhydrophobic systems, we report a simple and rapid approach to prepare patterned bubble arrays in water and their applications in low-frequency acoustic blocking. Patterned bubbles with the desired size, shape, and position can be prepared. Single-layer bubble arrays can block the sounds at low frequencies because of local resonance. By varying the size and distance of the bubbles without changing the thickness, the operating frequency can change from 9 to 1756 kHz. Besides, by preparing multilayer bubbles, broad and low-frequency acoustic band gaps can be achieved, with the generalized width of γ (ratio of the bandgap width to its start frequency) reaching 1.26. This method provides a feasible strategy to control acoustic waves at low frequencies for applications such as acoustic blocking, focusing, imaging, and detecting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.