Abstract

The enzymatic production of hydrogen sulfide (H2S) from cysteine in various metabolic processes has been exploited as an intrinsically "green" and sustainable mode for the aqueous biomineralization of functional metal sulfide quantum dots (QDs). Yet, the reliance on proteinaceous enzymes tends to limit the efficacy of the synthesis to physiological temperature and pH, with implications for QD functionality, stability, and tunability (i.e., particle size and composition). Inspired by a secondary non-enzymatic biochemical cycle that is responsible for basal H2S production in mammalian systems, we establish how iron(III)- and vitamin B6 (pyridoxal phosphate, PLP)-catalyzed decomposition of cysteine can be harnessed for the aqueous synthesis of size-tunable QDs, demonstrated here for CdS, within an expanded temperature, pH, and compositional space. Rates of H2S production by this non-enzymatic biochemical process are sufficient for the nucleation and growth of CdS QDs within buffered solutions of cadmium acetate. Ultimately, the simplicity, demonstrated robustness, and tunability of the previously unexploited H2S-producing biochemical cycle help establish its promise as a versatile platform for the benign, sustainable synthesis of an even wider range of functional metal sulfide nanomaterials for optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call