Abstract

Recently, bone marrow endothelial cells (BMECs) were found to play an important role in regulating bone homeostasis. However, few studies utilized BMECs to treat bone metabolic diseases including osteoporosis. Here, we reported bioinspired nanovesicles (BNVs) prepared from human induced pluripotent stem cells-derived endothelial cells under hypoxia culture through an extrusion approach. Abundant membrane C-X-C motif chemokine receptor 4 conferred these BNVs bone-targeting ability and the endothelial homology facilitated the BMEC tropism. Due to their unique endogenous miRNA cargos, these BNVs re-educated BMECs to secret cytokines favoring osteogenesis and anti-inflammation. Owing to the conversion of secretory phenotype, the osteogenic differentiation of bone mesenchymal stem cells was facilitated, and the M1-macrophage-dominant pro-inflammatory microenvironment was ameliorated in osteoporotic bones. Taken together, this study proposed BMEC-targeting nanovesicles treating osteoporosis via converting the skeletal endothelium-associated secretory phenotype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call