Abstract

Effective sweat management fabric for sportswear facilitates sweat removal from the skin and elevates the comfort for human. However, when the body is in a strong hot and humid environment or after strenuous exercise, the sweat management fabric will be totally wetted and saturated quickly. As a result, excess sweat cannot be absorbed effectively by the garment, which creates obvious stickiness and heaviness. In this paper, a directional water transport and collection multilayered knitted fabric (DWTCF) is prepared by plasma pretreatment technology and screen coating. The treelike water transport network inspired from nature is designed in order to drive the liquid flow along the channels. By surface modification, branched hydrophilic flow paths are fabricated, and other regions are hydrophobic. As a demonstration, DWTCF has been injected with water to observe the liquid transport behavior. During the experiment, 76.7% liquid is collected by DWTCF, but there is just 0.06% collected by an ordinary knitted fabric. The weight increase of the ordinary fabric is 555.4% larger than that of DWTCF. Specifically, DWTCF utilizes the wetting and pressure-gradient-induced interfacial tension as well as the gravitational effect to facilitate the fluid motion along the hydrophilic channel, in addition to the capillarity present in the fabric structure. This study provides a new idea to develop directional water transport and collection fabric to solve the moisture absorption saturation problem of the fabric, especially for conditions requiring intense sweating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.