Abstract

Through the utilization of smart materials and well-designed structures, functional surfaces have been developed to enable small-scale liquid/solid manipulation tasks, thereby facilitating crucial applications in the fields of microfluidics, soft robotics, and biomedical engineering. However, the design of functional systems with flexible, tunable, and multimodal liquid/solid manipulation capabilities remains a challenging endeavor. Here, inspired by asymmetric structural features in natural plants and metachrony in cross-scale biological systems, I report a magnetic-responsive functional surface that can achieve rich liquid operations under static magnetic fields, while also enabling the transportation of solids with multiple degrees of freedom (DOFs) under dynamic magnetic fields. The presence of curvature pillars on the surface, combined with their magnetic-driven tilt/gradient arrangement, imparts liquids with multi-directional spreading modes based on the asymmetry of Laplace pressure. I elucidate the mechanisms governing these liquid spreading modes and subsequently develop compelling liquid operations, such as adjustable anti-gravity climbing, spontaneous modal shifts in liquid transport, and liquid mixing. Furthermore, the dynamic metachronal motion of the magnetic pillars can be harnessed for solid object transportation. I illustrate the synchronous/asynchronous transport modes of the surface and propose a novel strategy for achieving 3-DOF solid transportation by coordinating the arrangement of objects and employing magnetic actuation strategies. This study presents a new design concept for application-oriented manipulation surfaces, which hold significant potential for extensive engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.