Abstract

Summary Redox-active organic materials (ROMs) have recently attracted significant attention for redox flow batteries (RFBs) to achieve green and cost-efficient energy storage. In particular, multi-redox ROMs have shown great promise, and further tailoring of these ROMs would yield RFB technologies with the highest possible energy density. Here, we present a phenazine-based catholyte material, 5,10-bis(2-methoxyethyl)-5,10-dihydrophenazine (BMEPZ), that undergoes two single-electron redox reactions at high redox potentials (−0.29 and 0.50 V versus Fc/Fc+) with enhanced solubility (0.5 M in acetonitrile), remarkable chemical stability, and fast kinetics. Moreover, an all-organic flow battery exhibits cell voltages of 1.2 and 2.0 V when coupled with 9-fluorenone (FL) as an anolyte. It shows capacity retention of 99.94% per cycle over 200 cycles and 99.3% per cycle with 0.1 M and 0.4 M BMEPZ catholyte, respectively. Notably, the BMEPZ/FL couple results in the highest energy density (∼17 Wh L−1) among the non-aqueous all-organic RFBs reported to date.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call