Abstract

The efficient reduction of water into hydrogen has emerged as an attractive strategy for the conversion of solar energy into chemical bonds. Hydrogenase enzymes efficiently catalyze this reaction. The [NiFeSe] hydrogenases, a subclass of the [NiFe] hydrogenases with a selenocysteine replacing a cysteine residue, display higher activities and O2 tolerance than the conventional sulfur-only [NiFe] hydrogenases. Inspired by the enhanced activity upon replacement of sulfur with selenium seen in nature, we report here the syntheses and characterization of cobalt and nickel selenolate coordination polymers (CPs) based on benzene-1,2,4,5-tetraselenolate (BTSe), which are efficient catalysts for the hydrogen evolution reaction (HER) from water. To reach a current density of 10 mA/cm2, the benchmarking metric for HER, both cobalt and nickel systems display overpotentials of only ∼350 mV, displaying a reduction in overpotential in comparison to the previously reported cobalt and nickel CPs based on benzene-1,2,4,5-t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.