Abstract

Photonic crystals (PCs) possess unique photonic band gap properties that can be used in the field of sensors and smart displays if modulated on the micronano structure. Both nonclose-packed (NCP) structure and high refractive index (RI) contrast of PC play important roles in response sensitivity during stretching. Herein, we constructed an NCP-structured PC strain sensor with high RI by a novel coating-etching strategy. Stretch-induced changes in structural color correspond to the strength of the force, enabling the detection of the strength of the acting force by the naked eye. The flexible 3D cross-linked network constructed by poly(ethylene glycol) phenyl ether acrylate and pentaerythritol tetrakis(3-mercaptopropionate) endows the sensor with excellent elasticity and robustness. The designed PC strain sensor achieves high mechanochromic sensitivity (∼8.3 nm/%, 0.02 to 4.21 MPa) and a substantial reflection peak shift (Δλ = 249 nm). More importantly, the high RI contrast (Δn = 0.43) between CdS and polymers imparts isotropic optical properties, ensuring a broad viewing angle while avoiding misleading signals. The research provides a novel fabrication strategy to construct sensitive PC strain sensors, expanding the prospective applicability to human movement monitoring and secure message encryption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.