Abstract
This study presents a bioinspired ion host featuring continuous binding sites arranged in a tunnel-like structure, closely resembling the selectivity filter of natural ion channels. Our investigation reveals that ions traverse these sites in a controlled, sequential manner due to the structural constraints, effectively mimicking the ion translocation process observed in natural channels. Unlike systems with open binding sites, our model facilitates sequential ion recognition state transitions, enabled by the deliberate design of the tunnel. Notably, we observe dual ion release kinetics, highlighting the system's capacity to maintain ion balance in complex environments and adapt to changing conditions. Additionally, we demonstrate selective binding of two different ions-a challenging task for systems lacking structured tunnels.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.