Abstract

AbstractDegenerative disc disease (DDD) has become a significant public health issue worldwide. This can result in loss of spinal function affecting patient health and quality of life. Artificial total disc replacement (A‐TDR) is an effective approach for treating symptomatic DDD that compensates for lost functionality and helps patients perform daily activities. However, because current A‐TDR devices lack the unique structure and material characteristics of natural intervertebral discs (IVDs), they fail to replicate the multidirectional stiffness needed to match physiological motions and characterize anisotropic behavior. It is still unclear how the multidirectional stiffness of the disc is affected by structural parameters and material characteristics. Herein, a bioinspired intervertebral disc (BIVD‐L) based on a representative human lumbar segment is developed. The proposed BIVD‐L reproduces the multidirectional stiffness needed for the most common physiological kinematic behaviors. The results demonstrate that the multidirectional stiffness of the BIVD‐L can be regulated by structural and material parameters. The results of this research deepen knowledge of the biomechanical behavior of the human lumbar disc and may provide new inspirations for the design and fabrication of A‐TDR devices for both engineering and functional applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.