Abstract
It remains a huge challenge to create advanced elastomers combining high strength and great toughness. Despite enhanced strength and stiffness, elastomeric nanocomposites suffer notably reduced extensibility and toughness. Here, inspired by the concept of sacrificial bonding associated with many natural materials, a novel interface strategy is proposed to fabricate elastomer/graphene nanocomposites by constructing a strong yet sacrificial interface. This interface is composed of pyridine-Zn(2+) -catechol coordination motifs, which is strong enough to ensure uniform graphene dispersion and efficient stress transfer from matrix to fillers. Moreover, they are sacrificial under external stress, which dissipates much energy and facilitates chain orientation. As a result, the strength, modulus, and toughness of the elastomeric composites are simultaneously strikingly enhanced relative to elastomeric bulk. This work suggests a promising methodology of designing advanced elastomers with exceptional mechanical properties by engineering sacrificial bonds into the interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.