Abstract
AbstractStudies of hard biological materials such as marine shells, animal teeth, horns and bones have produced fascinating ideas for mimicking their micro/nanostructure in the lab. The nacre in the abalone shell has a well-defined organic/inorganic structure that has a fracture resistance that is much higher than the individual constituents. By using biocompatible materials we have fabricated zirconium nitride/ polymethylmethacrylate alternating layers that are based on the structure of nacre. A combination of DC-magnetron sputtering and pulsed laser deposition on (100) silicon substrates was used to fabricate multilayers in a single chamber without breaking the vacuum. The ZrN films showed nanocrystalline columnar growth on the silicon substrates or on the PMMA nanolayer. High resolution SEM analysis at the inorganic/organic interface revealed well formed, uniform thickness inorganic films which are separated by the polymeric layer (30-90 nm). The ratio of the ceramic/polymer is the same as in nacre. Nanoindentation hardness values of ˜ 20GPa were measured on both the ZrN single film, similar to published values, and the ZrN/PMMA composite layers and the elastic modulus remained constant, independent of the number of layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.