Abstract
Ultrahigh-quality graphene with structural hierarchy has been successfully fabricated through a novel and effective bioinspired in situ self-catalyzing strategy with camphor leaves as a renewable carbon source. The intrinsic Ca-containing species in biomass transfers into CaO via the intermediate of CaCO3 during the pyrolysis process, and the finally imbedded CaO functions as in situ hard template and catalyst to generate hierarchical structure and construct the graphitic structure. The utilization of KOH effectively facilitated the graphene formation and enhanced the porosity of the carbon materials. The resultant graphene possesses many advantages for supercapacitor application, including large surface area, hierarchical porosity (crosslinked micro/meso/macroporous vacancies), well-organized graphene layers and favorable dually co-doping of O/N, thereby contributing to rapid charge transportation on the electrode/electrolyte interface, fast diffusion of electrolyte ions and high conductivity. When directly used as supercapacitor electrode (without the mixture of any conductive agent), as-produced graphene exhibited a specific capacitance of 397F/g at a current density of 1.0 A/g with a high rate retention of 74% from 1 to 20 A/g in a three-electrode system with 6 M KOH aqueous electrolyte. The high-quality graphene prepared from biomass via a readily scalable method opened up new vision towards high performance applications in energy storage and conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.