Abstract

Hydrogen bonds influence secondary coordination spheres around metal ions in many proteins. To duplicate these features of molecular architecture in synthetic systems, urea-based ligands have have been developed that create rigid organic frameworks when bonded to metal ions. These frameworks position hydro-gen bond donors proximal to metal ion(s) to form specific chem-ical microenvironments. Iron(II) and manganese(II) complexes with constrained cavities activate O(2), yielding M(III) (M(III) = Fe and Mn) complexes with terminal oxo ligands. Installation of anionic sites within the cavity assists the formation of complexes with M(II/III)-OH and M(III)-O units derived directly from water. Opening the cavity promotes M(mu-O)(2)M rhombs, as illustrated by isolation of a cobalt(III) analogue, the stability of which is promoted by the hydrogen bonds surrounding the bridging oxo ligands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.