Abstract
The human hand is one of the most complex and compact grippers that has arisen as a product of natural genetic engineering; it is highly versatile, as it handles power and precision tasks. Since proper contact points and force directions are required to ensure versatility and secure a stable grip on an object, there must be a large workspace and controllable tip force directions for the digits. Although they are important, many individuals with neuromuscular diseases experience loss of these features. Thus, we propose a high-degree-of-freedom (DOF) soft robotic glove inspired by the anatomical features of human hands. The mechanism for adjusting the position and force direction of each tip is based on the structure of the extrinsic and intrinsic muscle-tendon units. The large thumb workspace was achieved by assisting opposition/reposition and flexion/extension to enable various grasping postures. A bidirectional actuation control mechanism with a cable-actuated agonist and an elastomer antagonist increased the assisted DOF and maintained compactness. The kinematic and kinetic performances of our device were evaluated by performing tests with eight stroke survivors. The thumb workspace increased by 43%, 207%, and 248% in the distal-proximal, dorsal-palmar, and radial-ulnar directions, respectively. The pinching shear force decreased by 54% and 45% for the nonthumb digits and thumb, respectively. These device-assisted improvements allowed objects to be stably grasped and manipulated in various postures. The novel device can assist individuals with impaired hand function to improve their grasping performance. Clinical Research Information Service (CRIS) Registration Number: KCT0004855.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.