Abstract

AbstractHemostatic materials facilitate rapid hemostasis and significantly mitigate the potential of fatal hemorrhage in civilian and military traumas. However, most existing hemostatic materials are limited in material‐dependent forms and fail to integrate multifunctionality, thus constraining their versatility for differing settings and wound healing capacity. Herein, a facile, versatile armor strategy is proposed to endow various biomaterials with rapid hemostasis, infection prevention, and tissue healing capabilities. The armor is fabricated on the surface of substrates first through chemical cross‐linking of adhesive catechol (phenol) and collagen (polyamine) inspired by insect sclerotization, followed by zinc ions (Zn2+) chelation based on mussel‐inspired metal‐phenol coordination chemistry, referred to “metal‐phenol‐polyamine system”. This armor facilitates clot formation by promoting platelet aggregation and activating both intrinsic and extrinsic coagulation pathways. Moreover, the integrated Zn2+ endows the armor with potent antibacterial properties against both Gram‐positive and Gram‐negative bacteria. Consequently, this strategy armors a hemostatic sponge that effectively controls bleeding in rabbit hemorrhage models and successfully facilitates the complete healing of epidermal traumas in rats within 14 days. This metal‐phenol‐polyamine system‐assisted armor provides a potential and universal strategy for efficient hemostasis and wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.