Abstract

AbstractProtein hydrogels with tailored stimuli‐responsive features and tunable stiffness have garnered considerable attention due to the growing demand for biomedical soft robotics. However, integrating multiple responsive features toward intelligent yet biocompatible actuators remains challenging. Here, we report a facile approach that synergistically combines genetic and chemical engineering for the design of protein hydrogel actuators with programable complex spatial deformation. Genetically engineered silk‐elastin‐like proteins (SELPs) were encoded with stimuli‐responsive motifs and enzymatic crosslinking sites via simulation‐guided genetic engineering strategies. Chemical modifications of the recombinant proteins were also used as secondary control points to tailor material properties, responsive features, and anisotropy in SELP hydrogels. As a proof‐of‐concept example, diazonium coupling chemistry was exploited to incorporate sulfanilic acid groups onto the tyrosine residues in the elastin domains of SELPs to achieve patterned SELP hydrogels. These hydrogels can be programmed to perform various actuations, including controllable bending, buckling, and complex deformation under external stimuli, such as temperature, ionic strength, or pH. With the inspiration of genetic and chemical engineering in natural organisms, this work offers a predictable, tunable, and environmentally sustainable approach for the fabrication of programmed intelligent soft actuators, with implications for a variety of biomedical materials and bio‐robotics needs.This article is protected by copyright. All rights reserved

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.