Abstract

Even though the huge potential in significantly decreasing the energy consumption for cooling buildings and the human body is presented by radiative cooling technology, there is still a long way to realize its real-commercial application, considering comprehensive performances, such as safety, comfort, longevity, and production cost. Inspired by the biological micro-nano structures of Cyphochilus, we develop a one-step, large-scale, and low commercial-cost method to prepare multifunctional composite textiles, with effective cooling, fire safety, and directional water transportation. The high emissivity (96.8 %) in the atmospheric window and high reflectivity (97.1 %) in the solar waveband are successfully achieved. When exposed to direct sunlight, composite textiles can achieve up to 5 °C below commercial textiles at a solar intensity of 750 W•m−2. Besides, the directional water transportation and the excellent mechanical strength further improve the practical application. This work proposes a radiatively cooled composite textile to achieve personal thermal management and fire protection to meet the needs of specialty garments such as firefighting suits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.