Abstract

The pretreatment of complicated biological samples to eliminate the interference of nonglycopeptides and improve the efficiency of glycopeptides detection is crucial in glycoproteomics research. Hydrophilic interaction chromatography (HILIC) has been adopted for enrichment of glycosylated peptides following identification with mass spectrometry, but it is still urgent to develop novel hydrophilic materials to save cost and improve enrichment efficiency. Scientists are pursuing to fabricate freestanding intelligent artificial materials. One promising approach is to use biomimic material. In our case, “one-pot” strategy was developed to prepare bioinspired nano-core-shell silica microspheres (CSSMs), employing tetrapropylorthosilicate as the silicon source and phenolic resin as the soft template. The pore structure of the obtained microspheres diverged from the center to the outside with diameter ranged from 150 to 340 nm, and shell layer ranged from 25 to 83 nm by adjusting the preparation parameters. Some of them showed dandelion-like morphology. After hydrophilic modification, these CSSMs exhibited great hydrophilicity and could be used as sorbents for enriching N-glycopeptides from complicated biological samples in HILIC. Up to 594 unique N-glycopeptides and 367 N-glycosylation sites from 182 N-glycoproteins were unambiguously identified from 2 μL of human serum, which was superior to the enrichment performance of many HILIC materials in reported papers, demonstrating great potential advantages in proteomic application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.