Abstract

This article describes the mineralization behavior of CaCO(3) crystals on electrospun cellulose acetate (CA) fibers by using poly(acrylic acid) (PAA) as a crystal growth modifier and further templating synthesis of CaCO(3) microtubes. Calcite film coatings composed of nanoneedles can form on the surfaces of CA fibers while maintaining the fibrous and macroporous structures if the concentration of PAA is in a suitable range. In the presence of a suitable concentration of PAA, the acidic PAA molecules will first adsorb onto the surface of CA fibers by the interaction between the OH moieties of CA and the carboxylic groups of PAA, and then the redundant carboxylic groups of PAA can ionically bind Ca(2+) ions on the surfaces of CA fibers, resulting in the local supersaturation of Ca(2+) ions on and near the fiber surface, which can induce the nucleation of CaCO(3) on the CA fibers instead of in bulk solution. Calcite microtube networks on the macroscale can be prepared by the removal of CA fibers after the CA@CaCO(3) composite is treated with acetone. When the CA fiber scaffold is immersed in CaCl(2) solution with an extended incubation time, the first deposited calcite coatings can act as secondary substrate, leading to the formation of smaller calcite mesocrystal fibers. The present work proves that inorganic crystal growth can occur even at an organic interface without the need for commensurability between the lattices of the organic and inorganic counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.