Abstract
This paper presents a control algorithm to achieve crawling locomotion for a multi-arm robotic system inspired by live octopuses. First the paper introduces a dynamic model of a continuum arm. The model accounts for the key features relevant to crawling locomotion, namely longitudinal muscles and suckers that provide force interaction with the surrounding environment. This single arm model is then validated against live octopus data and expanded to an 8-arm system. Appropriate coordination algorithms of the eight arms result in crawling locomotion. The results of this work can be used to study the motor control schemes for both multiple continuum arm robots and live octopuses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.