Abstract

Most tubular constructs lack sufficient strength and tunability to comply with the mechanical demands of native tissues. Therefore, we embedded coupled helical coils (CHCs) produced from biodegradable polymers - to mimic collagen fiber orientation as found in nature - in collagen type I sponges. We show that the mechanical behavior of CHCs is very similar to native tissue and strengths structurally weak tubular constructs. The production procedure is relatively easy, reproducible and mechanical features can be controlled to meet different mechanical demands. This is promising in template manufacture, hence offering new opportunities in tissue engineering of tubular organs and preventing graft failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.