Abstract
This study focuses on developing copper oxide-based nanocomposites using plant extracts for photocatalytic applications. Curcuma amada leaf and Alysicarpus vaginalis leaf extracts were utilized alongside recycled copper precursors to synthesize photocatalysts via a green synthesis approach. Structural characterization through X-ray diffraction confirmed the formation of monoclinic CuO with reduced crystallite sizes due to plant extract incorporation. Fourier-transform infrared spectroscopy identified additional functional groups from the plant extracts, enhancing the material's properties. UV-Vis spectroscopy demonstrated increased light absorption and narrowed bandgaps in the nanocomposites, crucial for efficient photocatalysis under visible light. Morphological studies using FESEM revealed unique leaf-like structures in nanocomposites, indicative of the plant extract's influence on morphology. Photocatalytic degradation of methylene blue, rhodamine B, Congo red, and reactive blue 171 dyes showed enhanced performance of plant extract-modified CuO compared to without plant extract mediated CuO, attributed to improved charge carrier separation and extended lifetime. The effects of pH, catalyst dosage, and dye concentration on degradation efficiency were systematically investigated, highlighting optimal conditions for each dye type. Radical scavenger studies confirmed the roles of holes and hydroxyl radicals in the degradation process. Kinetic analysis revealed pseudo-second-order kinetics for dye degradation, underscoring the effectiveness of the nanocomposites. Overall, this research provides insights into sustainable photocatalytic materials using plant extracts and recycled copper, showcasing their potential for environmental remediation applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.