Abstract
This paper reports that a novel polyimide dielectric composite with three-dimensional (3D) thermally conductive networks and enhanced breakdown strength was firstly fabricated by filling with core-double-shell structured F-BA fillers. The F-BA particles were composed of nano-sized boron nitride (nBN) and polydopamine-coated spherical alumina (PDA@Al2O3). Moreover, to ameliorate interfacial compatibility between F-BA fillers and PI matrix as well as restrain phonons scattering during propagation, 1,6-Diisocyanatohexane (HDI) was innovatively used as “bridge agent” to connect and functionalize nBN and PDA@Al2O3 particles to generate core-double-shell structure. The results revealed that breakdown strength of PI dielectric composite with 25 wt % F-BA fillers was increased to 146.3 MV·m−1, showing an increment of 68.5% in comparison with that of pure PI. Furthermore, the thermal conductivity of F-BA/PI composite with 25 wt % F-BA fillers increases to 6.41 W/m·K of in-plane direction and 1.01 W/m·K of through-plane direction, respectively, which shows 36 and 6 times higher than polyimide of 0.18 W/m·K. For dielectric properties of F-BA/PI composite, the dielectric constant and loss are less than 3.5 and 0.02, respectively. Considering these properties, the prepared PI dielectric composite shows potential application in high-performance electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.