Abstract

Efficient and cost-effective oxygen evolution reaction (OER) electrocatalysts are closely associated with many important energy conversion technologies. Herein, we first report an oxygen-evolving cobalt-citrate metal-organic framework (MOF, UTSA-16) for highly efficient electrocatalytic water oxidation. Benefiting from synergistic cooperation of intrinsic open porous structure, in situ formed high valent cobalt species, and existing Co4O4 cubane, the UTSA-16 exhibits excellent activity toward OER catalysis in alkaline medium. The UTSA-16 needs only 408 mV to offer a current density of 10 mA cm-2 for OER catalysis, which is superior to that of most MOF-based electrocatalysts and the standard Co3O4 counterpart. The present finding provides a better understanding of electroactive MOFs for water oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.