Abstract

We have investigated adenine and guanine functional PGMAAdenine and PGMAGuanine as proton-conducting bioinspired membranes. Poly(glycidyl methacrylate) (PGMA) was prepared by free-radical polymerization and then modified with adenine and guanine molecules via ring opening of the epoxide ring. The complexed structure of the polymers was confirmed by FT-IR spectroscopy and (13)C CP-MAS NMR and elemental analysis studies. The blends of adenine and guanine functional polymers with phosphoric acid (H(3)PO(4)) and poly(vinyl phosphonic acid) (PVPA) were prepared in several stoichiometric ratios. The thermal and proton-conducting properties of these membranes were investigated in the anhydrous state. Phosphoric acid-doped polymers had lower T(g) values and higher proton conductivities than PVPA blends of adenine and guanine functional PGMA. (PGMAAdenine)-(H(3)PO(4))(2) had a maximum water-free proton conductivity of approximately 4 mS/cm at 150 degrees C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.