Abstract

AbstractBioinspired titanium implant nanotexturing achieved via advanced techniques such as lithography, hydrothermal and laser patterning enables modulation of cell functions toward enhanced bioactivity and antibacterial efficacy. However, such costly, multi‐step methods limit clinical translation and benchtop implant modification. For the first time, single‐step, cost‐effective, and translatable electrochemical anodization is reported to fabricate bioinspired nanopillar‐like textures on micro‐rough titanium. In‐depth surface characterization confirms the formation of novel nanostructures, namely nanoscale Spinules, Daggers, Papillae, Spikes, and Flames, exhibiting varied roughness and wettability. Next, in separate experiments, primary human osteoblasts and polymicrobial salivary biofilm are cultured on the implant substrates. Nanotextured surfaces show high protein adhesion and maintain the proliferation, adhesion, and spreading of osteoblasts. Interestingly, all nanotextures exhibit superior antibiofilm abilities compared to control surfaces. Bioactive and antibacterial implant surface nano‐texturing achieved via single‐step anodization has the potential for clinical translation as the next generation of orthopedic and dental implant surface modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call