Abstract
Bioartificial liver (BAL) system has become a promising alternative to traditional liver transplantation in rescuing acute liver failure (ALF) patients. Herein, inspired by natural microstructure of hepatic lobules, a novel biomimetic bioartificial liver system (BBALS) is developed by integrating human induced pluripotent stem cell-derived hepatocytes (hiPSC-Heps) -laden microparticles and semipermeable microtubes into a microfluidic platform. As the working units are hepatic lobules-like semipermeable microtubes surrounding with serum-free suspension differentiated hiPSC-Heps microcarriers, the BBALS is endowed with functional cell aggregates and effective circulation system. Thus, the BBALS possesses high cell viability, favorable function regeneration, and effective substances exchange. Based on these features, a 3D liver chip with multiple parallel BBALS units is created for filtering the plasma of ALF rabbits, which validates the research significance and application potential of the proposed BBALS. Moreover, the novel integrated BBALS is applied to treat ALF rabbits and shows great advantages in increasing survival, generating serum proteins, and decreasing inflammation. These properties point to the broad prospects of BBALS in treating related diseases and improving traditional clinical methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.