Abstract

Core-shell polymer-silica hybrid nanoparticles smaller than 50 nm in diameter were formed in the presence of micelles of poly(2-aminoethyl vinyl ether-block-isobutyl vinyl ether) (poly(AEVEm-b-IBVEn)) through the hydrolysis and polycondensation of alkoxysilane in aqueous solution at a mild pH and temperature. The size of the nanoparticles as well as the number and size of the core parts were effectively controlled by varying the molecular weight of the copolymers. The polymers could be removed by calcination to give hollow silica nanoparticles with Brunauer-Emmett-Teller surface areas of more than 500 m2 g-1. Among these, silica nanoparticles formed with poly(AEVE115-b-IBVE40) displayed an anisotropy of single openings in the shell. The use of an alternative copolymer, poly(AEVE-b-2-naphthoxyethyl vinyl ether) (poly(AEVE113-b-βNpOVE40)), yielded core-shell nanoparticles with less pronounced anisotropy. These results showed that the degree of anisotropy could be controlled by the rigidity of micelles; the micelle of poly(AEVE115-b-IBVE40) was more deformable during silica deposition than that of poly(AEVE113-b-βNpOVE40) in which aromatic interactions were possible. This bioinspired, environmentally friendly approach will enable large-scale production of anisotropic silica nanomaterials, opening up applications in the field of nanomedicine, optical materials, and self-assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.