Abstract

AbstractThe recognition of transitive, goal-directed actions requires a sensible balance between the representation of specific shape details of effector and goal object and robustness with respect to image transformations. We present a biologically-inspired architecture for the recognition of transitive actions from video sequences that integrates an appearance-based recognition approach with a simple neural mechanism for the representation of the effector-object relationship. A large degree of position invariance is obtained by nonlinear pooling in combination with an explicit representation of the relative positions of object and effector using neural population codes. The approach was tested on real videos, demonstrating successful invariant recognition of grip types on unsegmented video sequences. In addition, the algorithm reproduces and predicts the behavior of action-selective neurons in parietal and prefrontal cortex.KeywordsAction RecognitionPrecision GripTransitive ActionPower GripPosition InvarianceThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.