Abstract

Many enzymes use adaptive frameworks to preorganize substrates, accommodate various structural and electronic demands of intermediates, and accelerate related catalysis. Inspired by biological systems, a Ru-based molecular water oxidation catalyst containing a configurationally labile ligand [2,2':6',2″-terpyridine]-6,6″-disulfonate was designed to mimic enzymatic framework, in which the sulfonate coordination is highly flexible and functions as both an electron donor to stabilize high-valent Ru and a proton acceptor to accelerate water dissociation, thus boosting the catalytic water oxidation performance thermodynamically and kinetically. The combination of single-crystal X-ray analysis, various temperature NMR, electrochemical techniques, and DFT calculations was utilized to investigate the fundamental role of the self-adaptive ligand, demonstrating that the on-demand configurational changes give rise to fast catalytic kinetics with a turnover frequency (TOF) over 2000 s-1, which is compared to oxygen-evolving complex (OEC) in natural photosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call