Abstract

Biomedical dressings have been comprehensively explored for wound healing; however, the complicated manufacturing process and mono-function of the dressing remain critical challenges for further applications. Here, a versatile extrusion three-dimensional (3D) printing strategy to prepare MXene and spidroin-incorporated microneedle scaffolds with photothermal responsive and self-healing properties for promoting wound healing is proposed. Inspired by the cactus, the microneedle scaffold is composed of a top porous scaffold, and microneedles whose inverse opal (IO) photonic crystal (PC) structure and the ample space between the scaffold gaps endow the microneedle scaffold with high drug-carrying capacity. Furthermore, the excellent electrical and photothermal properties of MXene allow the microneedle scaffold to perform sensitive wound movement monitoring and controlled drug release under near-infrared irradiation. Moreover, the extensive hydrogen bonding and Schiff base between the spidroin, polyurethane (PU), and aloe vera gel (avGel) molecules conferred high self-healing and mechanical performance to the microneedle scaffold. In vivo experiments with rat models of wounds have shown that drug-laden microneedle scaffolds under near-infrared (NIR) light can promote the recovery of full-skin wounds. These unique characteristics suggest that 3D-printed multifunctional microneedle scaffolds show great potential for applications in facilitating wound healing and will find widespread applications in wound management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call