Abstract

Biomechanical forces govern the behaviors of organisms and their environment and examining these behaviors to understand the underlying phenomena is an important challenge. One experimental approach for probing these interactions between organisms and their biomechanical environment uses biologically-inspired, artificial surrogates that reproduce organic mechanical systems. For the case of complex, multicellular organisms, robot surrogates have been particularly effective, such as in the analysis of the fins of fish and insects' wings. This biologically-inspired approach is also exciting when examining cell-scale responses as multicellular organisms' behavior is directly influenced by the integrated interactions of smaller-scale components (i.e., cells). In this review, we introduce the burgeoning field of engineering of artificial cells, which focuses on developing cell-scale entities replicating cellular behaviors. We describe both a bottom-up approach to constructing artificial cells, using molecular components to directly assemble artificial cells, as well as a top-down approach, in which living cells are encapsulated in a single entity whose behavior is determined by its constituent members. In particular, we discuss the potential role of these artificial cells as implantable controllers, designed to alter the mechanical behavior of a host organism. Eventually, artificial cells designed to function as small-scale controllers may help alter organisms' phenotypes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.