Abstract

Dragonflies have excellent flight characteristics, which are inextricably related to the characteristics of their wings. Their wings not only support a variety of loads during flight but also maintain high-efficiency flight characteristics. In this study, the forewing of a dragonfly (Pantala flavescens (Fabricius)) was used as a research object to explore the microstructure of the surface, cross section, and the vein distribution. Three-dimensional models of three different structures of the forewing vein, including an oval-shaped hollow tube, a circular hollow tube, and a circular solid tube, were established. Fluid dynamics analysis of these three forewing models under different angles of attack during gliding was carried out by FLUENT software, and subsequently, the influence of the dragonfly forewing vein structure on its flight characteristics was analyzed. The numerical simulation results indicated that the vein structure has a considerable influence on the lift, drag, and lift-drag ratio of the P. flavescens forewing. It was indicated that among the tested models, the forewing model with oval-shaped hollow tubular veins has better flight efficiency and aerodynamic characteristics. The results of this study may provide the basis for a novel bionic concept of flapping wing microaircraft design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.