Abstract

The biocoordination chemistry of antimony and bismuth has been extensively investigated due to the historical use of these metals in medicine. Structures of bismuth antiulcer agents and interactions of Bi3+ with proteins and enzymes, such as transferrin and lactoferrin, the histidine-rich protein Hpn, and urease, have been characterized. Sb5+ is a prodrug and is bioreduced or activated to its active form Sb3+ intracellularly. Antimony binds to biomolecules, such as glutathione, trypanothione, and nucleotides, and forms binary and ternary complexes, which may allow it to be trafficked in cells. These studies have improved our understanding of the mechanism of action of bismuth and antimony drugs, which in turn allows the future design of drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.